# Take Me to the Limit One More Time 

$$
\sum_{n=1}^{\infty}\left(\frac{a}{b}\right)^{n}
$$

Let $\frac{a}{b}$ be positive and less than 1 .
Translation:

1. A limit is a value an expression is desperately trying to reach. You will know it when you see it!
2. $\frac{a}{b}$ is a fraction less than one, and of course, $\mathrm{b} \neq 0$.
3. $\left(\frac{a}{b}\right)^{n}$ means to raise your fraction to the $\mathrm{n}^{\text {th }}$ power, first when $\mathrm{n}=1$, then $\mathrm{n}=2$, and forever until $\mathrm{n}=\infty$ (but not really because you will see the pattern before then).
4. $\quad \sum$ means to sum up, in this case all the powers of the fractions you calculated.

Hint: You can use decimals to get to the limit, but it will be hard to see the pattern if you don't write the limit as a fraction. It is a good "attention to detail" exercise to crank the powers of the fractions and the sums out by hand.

Can you do enough examples to make a prediction for the limit of the infinite sum of powers of any fraction less than one?

If you love patterns, read on for an example!

Example: $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$

Step one: $\left(\frac{1}{2}\right)^{1}=\frac{1}{2}$
Step two: $\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$
Step three: $\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8} \quad$ Any idea what this sum is trying to get close to?

Step four: $\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{15}{16}$
Step five: $\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=\frac{31}{32}$

I am pretty convinced looking at $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}$, and $\frac{31}{32}$ that the sum of these fractions is trying really, really hard to get to the number 1.

Here is what the graph of the sums looks like as n moves from 1 to 5.


So, the limit of $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ is 1 .

Choose other fractions less than 1 and see if there is a pattern which allows you to predict what the sum of the powers of the fraction is trying to get to! Try starting with unit fractions and keep the denominators small.

I can predict, without doing the math, that $\sum\left(\frac{5}{8}\right)^{n}$, for all values of $\mathrm{n}=1$ to infinity, is really, really trying to reach the limit of $1 \frac{2}{3}$. Can you figure out how $I$ know that?

